

MDA Vision
For

Government and Defense

The Model Driven Architecture Opportunity
Government and defense systems are undergoing a shift from independent hardware
solutions to integrated software solutions that enable network centric warfare and
collaborative homeland security. Organizations able to deliver on these visions will be
those that excel and prosper in the new millennium. The following is a plan to capitalize
on this opportunity based on an emerging technology, Model Driven Architecture.

Driving Requirements
Complex and unique systems must be understood, designed, proposed, executed and
delivered with factory-like efficiency and compelling results. Despite the improvements
in technologies and processes, proposing and delivering solutions is still expensive and
high-risk. Without the capability to deliver compelling solutions opportunities are being
missed.

The typical government project of today combines several challenges;

• Large system complexity

• Changing requirements

• Fluid deployment platforms

• Short development cycles and limited budgets

• Nessesity to integrate with legacy technologies

• Leading-edge functionality embracing operational vision such as network warfare
and global integration

• Expectation of long life-cycles in the face of changing requirements and
technologies

• Evolution without re-design and re-implementation

• Controlled and reasonable total cost of ownership

• Ad-hoc partnerships with other suppliers

• Mature and repeatable processes

Current processes and techniques evolved from an assumption that requirements and
supporting technologies would be relatively constant over the life of a project or a system
– this assumption is simply not valid today. A central theme of the above challenges is

Model Driven Architecture 1
 Copyright (c) 2003, Data Access Technologies, Inc.

change – we must design for change with agile and adaptable tools, techniques and
processes. Systems must evolve with changing requirements, designs, infrastructure and
platforms. This evolution must be fast, efficient and inexpensive.

The evolution of software
Since the first symbolic assembler to the latest visual tool software has been evolving
along a few fundamental directions;

• Higher levels of abstraction – the move of software away from the technology and
closer to the problem domain. This can be seen in high-level languages, symbolic
databases as well as modeling and knowledge based systems.

• Separation of concerns – the move from tightly coupled monolithic systems to
loosely coupled systems where different components of and viewpoints on the
system can be independently described and evolved.

• Industrial processes – the move from un-restrained creative approaches to every
problem to well defined, reliable and repeatable processes.

• Reuse – the move from one-off solutions to systems as compositions of reusable
components.

This transition from an infant technology to a mainstream industry is now converging in
the form of the Model Driven Architecture with the supporting standards, tools,
technologies, methodologies and processes. We will capitalize on MDA to leapfrog into
a market leading position.

The Model Driven Architecture (MDA) approach
The basic tenants of MDA are simple – to move the focus of systems development from
software artifacts to high-level models. High level models are tuned to the problems
being solved, resonating with domain experts. Provisioning processes are used to
automate much of the process of producing the system in terms of technology artifacts,
documentation and process support. These high-level models and provisioning processes
are supported by open standards and COTS tooling. In MDA the heart of the system is
models, not code.
The Choice of MDA as the System Development Approach

Government systems embrace a long-term strategy that must survive changes in
objectives, approach and technology. In the short term the technical foundation of
systems is frequently fluid – systems, interfaces and technologies will be changing as the
system is developed. To support short-term fluidity and long term stability systems must
be designed for change. Only by designing with the expectation of changing
requirements and changing technologies can systems fulfill their goals now and into the
future, and be delivered on-time with minimal risk.

To support design for change we will employ a strategy that separates technology
concerns from domain concerns – since both will change over time independently. A
Model Driven Architecture (MDA) has proven to be the best approach to supporting

Model Driven Architecture 2
 Copyright (c) 2003, Data Access Technologies, Inc.

design for change. MDA describes the system in terms of models and ontologies1 at both
the domain and technology levels with an automated process for creating system
implementations, tests and documentation. MDA is based on a set of emerging standards
from the Object Management Group (OMG)2, leveraging the OMG’s leadership in open
systems, interoperability and UML.

To support design for change with MDA, systems will be specified in terms of high-level
ontologically aware models and that describe domain problems in domain terms,
independent of the implementation technology. Another set of models defines the
technology (Application servers, Grids, Agents, and legacy systems) in technology terms.
An automated provisioning3 process is used to transform these high-level ontologically
aware domain models into the executable and deployable components that execute the
system. MDA the following advantages:

• Support for a fast-iterative spiral development process supported by automated
provisioning

• Single point of change with automated propagation to and validation of all system
artifacts

• An agile full life-cycle approach that ties together requirements, analysis, designs,
implementation, tests, monitoring, documentation and the executing system

• Rapid, reliable and reproducible development due to the automated provisioning
of systems from models

• Support for evolution and refinement of the technical architecture over time
without re-implementing or re-designing the core domain logic – including
runtime specification of rules, processes and policies

• Automated production of code, configurations, tests, validation and
documentation

• Support for the automated integration of diverse new and legacy technologies

• Reduction in total lifecycle cost, time and labor due to automation and reuse

• Reduced risk of technology lock-in and obsolescence

• Increased ability to optimize the technologies and architecture before, during and
after deployment

• Reduced risk of project failure due to the fast, iterative process and increased
flexibility in technology choices and domain model evolution

• Use of standards integrates with existing processes supported by open and readily
available resources

1 An ontology defines the terms in a domain and how those terms relate to each other
2 Object Management Group (OMG) – www.omg.org

Model Driven Architecture 3

3 Provisioning, in this sense, is the process of transforming models into systems

 Copyright (c) 2003, Data Access Technologies, Inc.

• Reduced lock-in to specific vendors or tools by using standards-based models,
IDEFx and UML

• Increased ability to evolve and adapt domain models, rules, and processes

For the above reasons, a Model Driven Architecture is central to our plan to address the
requirements for a high degree of flexibility while reducing cost and risk. The
combined leverage of early and incremental implementation combined with
automated and repeatable testability provides a profound and lasting benefit to the
effectiveness of the entire system for its entire lifetime.

Iterative spiral process

Build Build Build Build Build
Release
Build Deploy

Business
Model
Design

Infrastructure
Development

Automation

Systems will be developed in an iterative spiral process allowing for maximum flexibility
and design for change. Due to the MDA “Buffer”, the domain modeling and

implementation will be largely
independent of the infrastructure
development and refinement. Both

teams will be able to iterate on
their own
schedule, using
the provisioning
capability to
build and

validate revisions. Both teams will
design their process to converge at major

system iterations, providing early visibility
of results to the team and to the customer. This iterative spiral process will take place
before, during and after initial deployment – allowing systems to improve over time.

How MDA works
MDA is used to create and maintain systems based on high-level models of the subject
domain. MDA separates the concerns of the operational domain architecture from the
technical infrastructure.

The operational domain architecture defines the concepts and structures necessary to
specify and understand the domain (such as domain or strike architectures). This
architecture includes the terms and concepts of processes, rules, policies, resources, units
of action, and capabilities of the domain so that models may be defined and refined in
high-level terms. The core domain models will be provided with the system along with
tools to maintain and extend these models as the system matures – including field
specification and refinement of policy and processes. These models represent the
metadata that governs the system at design time and runtime.

Model Driven Architecture 4
 Copyright (c) 2003, Data Access Technologies, Inc.

A “Provisioning model” will also be provided with the
system, this provisioning model will define the
processes and transformations required to implement
the domain using the systems infrastructure. The
provisioning model is used to configure provisioning
tools that are able to produce executable system
components based on the domain models. This
automated MDA process will produce a majority of
the manual implementation and provide templates into
which programmers place program code for complex
algorithms that cannot be easily generated by the
automation.

The domain models, infrastructure and provisioning
model are able to evolve independently, providing the
separation of domain concerns from technology concerns and reduction of risk that are
the cornerstones of MDA. In addition to producing implementation components, the
same provisioning technology will be used to automate the production of test cases and
documentation. Requirements, models, documents and the system are always
synchronized, traceable and consistent.

Cougaar
Agent

Architecture

Cougaar
Infrastructure

LDSS
Provisioning

Model

Provisioning is tuned
to the infrastructure

Tools
Produce &
Integrate

Agents

Logistics
Models

Logistics
Models

Code

Logistics
Architecture

MDA Automated provisioning
is based on models provided be
both domain experts (with easy
to use user interfaces) and
systems engineers providing
the technology and
infrastructure specification.
Automated MDA provisions
most of the execution artifacts,
test artifacts, documentation,
integration specifications and
runtime configuration policies
and processes that produce and
drive the system.

Domain
Models

Infrastructure
Models

Domain
Knowledge

System
Engineer

Execution Artifacts

•C
om

ponents
•H

arness
•M

onitors

Test Artifacts

Automated
Provisioning

Documentation
Artifacts

Integration
Artifacts

Code
(Java, C++…)

Interfaces
(IDL, WSDL)

Database Schema
(SQL)

Data Structures
(XML,IDEF0)

Configuration
Metadata, Descriptors

Message Structures
(WSDL, IDEFx)

The domain architecture will
based on the adopted OMG
standards of UML, the “Meta
Object Facility” (MOF4) and the “Enterprise Collaboration Architecture” (ECA). UML
provides for general modeling capability and is extended with the ECA to provide for
flexible and composable distributed components representing the interactions between
actors in the operational system. Multiple existing MDA tools and technologies will be
leveraged and extended for the needs of complex systems.

Model Driven Architecture 5

4 A “MOF” (Meta object facility) holds models and meta-models in a shared and versioned repository.
Tools and agents are able to maintain and query the models in the MOF repository at design time, test time
and runtime.

 Copyright (c) 2003, Data Access Technologies, Inc.

MDA over the system life-cycle

A primary advantage of MDA is facilitation of change before, during and after
deployment. The separation of concerns between the domain view and the technology
view allows each to evolve independently. A change to either a domain model or a
technology (provisioning) model will automatically be propagated across all systems
artifacts. Compare this to the manual case where such a change could well cause re-
development and testing of thousands of artifacts. Blanchard has estimated that a
requirement introduced at each subsequent lifecycle step increases the cost of a change
by a factor of 10. MDA largely eliminates the Blanchard effect.

0
10
20
30
40
50
60

Project
Time/Cost

Impact

R
eq

ui
re

m
en

t

C
O

E

XM
L-

IIO
P

TT
P

MDA Vs. Traditional

Traditional
MDA

The following example is based on a typical project; consider a system where the
following occurs;

• Half-way through the development process a new
requirement is added for context sensitive
security, affecting the implementation of
existing components. System design and
200 artifacts require change, testing and
re-integration.

• After the 4th build a new service is identified in the
operating environment, requiring a change from a built-
in service. 500 code and other artifacts require changes to
use the new service.

• During system performance validation the use of XML is found inappropriate for
a core service and a change is made to IIOP. Every agent requires a minor change
testing and re-integration.

• After deployment a change in the Tactics, Techniques and Procedures (TTP)
causes a re-design of a logistics service. System design and 900 system artifacts
require changes. Other systems that have built-on the system being developed
also require changes, testing and re-integration.

Role Based Collaboration

Supplier / Consumer
Collaboration

Asset Consumer

Supplier

Role Role

Role

Interaction

Inter
act

ionInteraction

Model Driven Architecture 6

Systems of systems require people, organizations and systems to collaborate for planning
and execution. A high-level view of such systems of
systems can be understood in terms of these
collaborations, the roles played by people, systems and
organizations within these collaborations and the
interactions between them. The collaboration of
components playing roles can be understood and
modeled using existing standards - the Object
Management Group (OMG) has adopted the “Enterprise
Collaboration Architecture” (ECA) as part of the
“Enterprise Distributed Object Computing” (EDOC)
standard. ECA specifies how to model collaborative
processes in a way that is sufficiently well defined to drive the execution of systems. In
addition to the modeling of collaborations, ECA describes how collaborations at one

 Copyright (c) 2003, Data Access Technologies, Inc.

level “drill down” into sub-collaborations. Each role in each collaboration becomes a
component in the system, separately implementable and deployable in components.

Collaboration modeling for systems of systems will include the specification of
collaborative processes, roles within these processes and the interactions between them.
Interactions specify message formats, sequencing, timing, security and quality of service.
Collaboration roles will also be able to include compositions of components filling other
roles so that processes can “drill down” into sub-processes.

Components representing people, platforms, organizations, automated systems are
described in terms of their roles within the logistics processes. These roles have ports
that are their communication points to other roles. In the systems environment each role
has corresponding agents, which plays that role in terms of the systems environment.

In the collaborative process model roles interact in a well defined way to implement the
logistics processes. In the systems environment, each port on an agent’s role
(corresponding to a communication channel of the role) corresponds to a service for two-
way conversation between agents. This interaction may be implemented across a variety
of local and distributed communication media. Components representing roles in
collaborations will be provisioned as components as the execution environment. The
execution environment can embrace Grid, Agent or application server technologies.

Communications between
components may be either
point-to-point services or event
based.

Model Driven Architecture 7

Roles to systems

Roles are performed by the
components configured to play
a given roles. The
implementation of agents able
to perform a given roles is
provided by the MDA
provisioning environment.
These implemented and
configured agents playing roles
are deployed on systems
platforms in the executing system. It is important to recognize that components, like
people and organizations, play multiple roles at the same time.

Implementation Implementation

Net

Hardware

COE
Net

Hardware

COE

Cougaar
COE &

Frameworks

Cougaar
COE &

Frameworks

Service

Agent in Role

Service

Agent in Role

Interaction
(With Information)

Role

Collaboration

Interaction
(With Information)

Role

Collaboration

The mix of organizational, platform and technology components

While the high-level picture shows only logistics roles, the executing systems
environment will include other components as well. These will be system services,
repositories, transformations, adapters, transaction coordinators, business objects,
messaging queues and other components to support the domain roles.

In a systems sense the technology components and business components have the same
“shape” in the system, but they are designed at different layers.

 Copyright (c) 2003, Data Access Technologies, Inc.

Roles are also defined for legacy systems, providing an integration point for components
and legacy to co-exist under a common environment and paradigm.

Standards
Data Access Technologies is very cognizant of the importance of standards. DAT
technologies are based on the XML, EJB, EDOC, Corba and UML standards and is
designed to target a variety of standards based infrastructures. We believe that the
enterprise should never be locked in to proprietary products. DAT has been active and
instrumental in setting many of today’s industry standards. We have recently participated
in the adoption of the Enterprise Collaboration Architecture as part of the OMG-EDOC.
This standard provides the basis for an open enterprise architecture leveraging UML and
a model driven architecture (MDA).

Component-X
Enterprise and defense applications produced by the “drag and drop” assembly of
components based on high-level design. The demand to rapidly deploy and evolve large
scale applications has made brute force methods of producing applications a threat to the
enterprise. Only by being able to assemble systems quickly and integrate solutions with
existing legacy applications can the enterprise hope to achieve new initiatives in the
timeframe required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These
include the “alphabet soupe” of middleware such as XML, Corba, Soap, Java, ebXml,
EJB, .net, Bizalk. What has not emerged is the way to bring these technologies together
into a coherent enterprise solution and component marketplace. MDA completes the
picture of enterprise-scale

Model Driven Architecture 8
 Copyright (c) 2003, Data Access Technologies, Inc.

components.

Our vision is to bring together the technologies, the standards, the tooling and the
marketplace to provide an MDA based enterprise component solution. Enterprise
components may be distinguished from desktop components in that they are application
server based “business logic” components that collaborate via standard protocols to
provide the “back bone” of the information system. These components deliver business
functionality that enables web applications, enterprise integration and e-commerce.

Our vision is one of a simple drag and drop environment for the assembly of enterprise
components that is integrated with and leverages an open component marketplace.
This will make buying and using a software component as natural as buying a battery for
a flashlight.

Component-X realizes the vision of drag-and drop assembly of applications with
independence from the supporting infrastructure.

MDA Provisioning Technologies
DAT MDA technologies are based on our provisioning engine, the capability to
transform models into systems and system artifacts into models. The provisioning engine
drives the process of producing system, including generation of code, documentation,
scripts, queries and schema. The provisioning engine is the core technology that makes
MDA work. With the provisioning engine we have pre-defined mappings for popular
technologies such as J2EE, web services and HTML. Extending the provisioning
specifications can support additional technologies.

Model Driven Architecture 9
 Copyright (c) 2003, Data Access Technologies, Inc.

Component-X and the provisioning engine provide the bases to expansion of the MDA
product line and continued leadership.

The Team
Since DAT provides both product related technologies and services, we have a highly
specialized and capable team. Our developers have years of background in all areas of
distributed systems, component technology, development tools, DBMS, middleware,
modeling, analysis and design and enterprise architecture. We specialize in solving
global enterprise needs with Internet technologies, every member of the team has key
skills in this pursuit. We can provide products, technologies, enterprise architecture and
outsource development for world-class applications.

Summary
A time-sensitive opportunity exists to capture a leadership position in applying MDA to
the vast array of government requirements. Swift action in forming the MDA partnership
is tactically important and strategically crucial.

Model Driven Architecture 10
 Copyright (c) 2003, Data Access Technologies, Inc.

	MDA Vision
	The Model Driven Architecture Opportunity
	Driving Requirements
	The evolution of software
	The Model Driven Architecture (MDA) approach
	The Choice of MDA as the System Development Approach
	Iterative spiral process

	How MDA works
	MDA over the system life-cycle

	Role Based Collaboration
	Roles to systems
	The mix of organizational, platform and technology component

	Standards
	Component-X
	MDA Provisioning Technologies
	The Team

	Summary

		2005-05-19T14:52:48-0400
	Thawte Freemail Member
	I am the author of this document

